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Abstract

The kinetic nonlinear dispersion relation, and frequency shift δωsrs, of a plasma wave driven by

stimulated Raman scattering (SRS) are presented. Our theoretical calculations are fully electro-

magnetic, and use an adiabatic expression for the electron susceptibility which accounts for the

change in phase velocity as the wave grows. When kλD & 0.35 (k being the plasma wave number

and λD the Debye length), δωsrs is significantly larger than could be inferred by assuming that the

wave is freely propagating. Our theory is in excellent agreement with 1-D Eulerian Vlasov-Maxwell

simulations when 0.3 ≤ kλD ≤ 0.58, and allows discussion of previously proposed mechanisms for

Raman saturation. In particular, we find that no “loss of resonance” of the plasma wave would

limit the Raman growth rate, and that saturation through a phase detuning between the plasma

wave and the laser drive is mitigated by wave number shifts.

PACS numbers: 52.35.Mw 52.38.Bv 52.38-r
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Currently, there is renewed interest in the nonlinear dispersion relation of electron plasma

waves (EPWs), particularly with regards to backward stimulated Raman scattering (SRS)

at large kλD (where k is the EPW wave number and λD the Debye length). For example, Vu

et al. [1] invoked phase detuning between the plasma wave and the laser drive, a consequence

of the nonlinear frequency downshift of the EPW, as a mechanism for Raman saturation and

as an explanation for the chaotic behavior of the Raman reflectivity. Brunner and Valeo [2]

proposed the alternative view that the growth of electrostatic sidebands, produced by the

trapped particle instability, is at the origin of Raman saturation and burstiness. Rose and

Russell [3] found a critical wave amplitude, Φmax(kλD), beyond which there is no solution

to the dispersion relation of a free EPW, and called this a “loss of resonance”. They further

showed (see Ref. [4]) that this feature strongly limits the growth of SRS, especially when

kλD > 0.53 since Φmax = 0 for kλD > 0.53.

In this Letter we provide a theoretical estimate, δωsrs, for the frequency shift of an SRS-

driven EPW, derived within the context of the three-wave model where the total electric

field is

~Etot = Ep sin(ϕ)x̂+ [El sin(ϕl) + Es cos(ϕs)] ŷ. (1)

Ep, El, and Es are slowly-varying non-negative envelopes for, respectively, the plasma,

laser, and scattered waves. The electromagnetic wave numbers and frequencies are given by

kl,s = ∂xϕl,s and ωl,s = −∂tϕl,s. Those of the plasma wave are k = ∂xϕ and ω = −∂tϕ. The

phase shift between the laser drive and the plasma wave is δϕ ≡ ϕ + ϕs − ϕl. As shown in

Ref. [5], at zero order in k−1∂xEp, the fully electromagnetic EPW dispersion relation is

1 + αdRe(χ) = 0, (2)

where χ is the electron susceptibility defined by Eq. (11) of Ref. [5] and where

αd ≡ 1 + 2η−1 sin(δϕ) + η−2

1 + η−1 sin(δϕ)
. (3)

η ≡ Ep/Ed, Ed ≡ (kvos/2ωs)Es is the amplitude of the ponderomotive field due to the laser

drive, and vos ≡ eEl/(mωl). From Eq. (3), one recovers that the dispersion relation of a free

wave is given by Eq. (2) with αd = 1. Figs. 1 and 2 show that when kλD & 0.35, we find

that the frequency shift for a free wave, δωfree, decreases more slowly with Φ ≡ eEp/kTe than

δωsrs, which we explain as follows. When solving Eq. (2), we assume that the linear value

of the driven EPW frequency, ωsrs(Φ = 0), is that of the linearly most unstable SRS-driven
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mode. For this mode, the linear value of αd is larger than unity which implies that ωsrs(0)

is larger than the linear frequency, ωfree(0), of a free EPW with the same kλD. As will be

proven below, αd quickly converges towards unity when Φ increases. As a result, ωsrs(Φ)

quickly drops towards ωfree(Φ), which makes δωsrs decrease more rapidly with Φ than δωfree,

especially when Φ is small. Since the linear value of αd increases with kλD, so does the

discrepancy between δωsrs and δωfree.
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FIG. 1: (Color online) δωsrs (black solid line), δωfree (blue dashed line), δωD (red dash-dotted line),

δωnum at x = 77λl (purple circles) and at x = 193λl (green crosses) for Il = 2 PW/cm2 and (a)

Te=4 keV, and (b) Te=5 keV.

In order to test the accuracy of our theoretical estimate, δωsrs, we compare it with the

frequency shift δωnum measured from Vlasov-Maxwell simulations of SRS. The simulations

are performed with the Eulerian Vlasov code elvis [6, 7]. The space and time steps are

∆x/λl = c∆t/λl = 0.03. The velocity step varies from run to run, with 0.0016 ≤ ∆v/vTe ≤
0.015, where vTe ≡ (Te/me)

1/2 is the thermal speed. The density profile is finite, with a

central, flat region from x/λl = 28 to 242 (see Fig. 1 of Ref. [7]). The laser enters from

vacuum on the left (x = 0), and a small-amplitude seed scattered light wave is injected on

the right with λs chosen to match the frequency of the most unstable mode. Our simulations
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FIG. 2: (Color online) (a): δωsrs (black solid line), δωD (red dash-dotted line), δωMO (pink dots)

and δωnum at x = 77λl (purple circles) and at x = 232λl (green crosses) for Te=9 keV and Il=8

PW/cm2. (b): δωnum (diamonds), δωsrs (black solid line), δωfree (green dashed line), δωD (red

dash-dotted line), and δωMO (pink dotted line) vs. kλD when Φ = 0.1. Each numerical result is for

a distinct run with a different Te, and Il=2 PW/cm2 for Te <6 keV (kλD < 0.485), Il=4 PW/cm2

for Te=6 keV, Il=6 PW/cm2 for Te=7 keV (kλD ≈ 0.519) and Il=8 PW/cm2 for Te >7 keV.

are thus more easily related to optical mixing or Raman amplification than to SRS growing

from noise. The seed intensity varied from Is/Il = 10−5 to 10−8, without affecting the

dispersion relation. δωnum and Φ are obtained via the Hibert transform (see, e.g. Ref. [8])

of the electrostatic field Ex vs. time at one x. k is computed from the distance between

zero-crossings of Ex. The scattered wave number and frequency are found similarly.

As illustrated in Figs. 1 and 2, we always find an excellent agreement between δωsrs and

δωnum. For all runs, the unperturbed plasma density n0 is 10% of the critical one, and the

laser vacuum wavelength is λl = 0.351 µm. The values of the laser intensity, Il, and the

electron temperature, Te, are specified in the figure captions. The indicated value of kλD in

these figures refers to the wave number of the linearly most unstable SRS-driven EPW for

the given plasma and laser parameters. δωnum is only plotted before Φ reaches its first local

time maximum. After this maximum, and near the laser entrance, one may see pulses in
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the time evolution of Φ. The good agreement between δωsrs and δωnum usually remains for

the early pulses (not only for the first one) but eventually breaks down together with the

validity of the adiabatic approximation. Away from the laser entrance, we numerically find

that Φ increases with time until a sideband eventually grows, which is reminiscent of the

result of Brunner and Valeo [2], and which then makes the notions of a central frequency,

and its shift, irrelevant. For the range of intensities we investigated, Il ≤ 10 PW/cm2, and

when 0.3 ≤ kλD ≤ 0.58, we thus find that our theory breaks down mainly when, eventually,

the EPW can no longer be considered nearly monochromatic. For lower values of kλD, and

maybe larger intensities, a nearly monochromatic EPW may reach so large an amplitude

that higher harmonics and a “DC” field need to be accounted for in order to correctly

calculate the frequency shift, as recently reported in Ref. [12].

We now compare δωsrs and δωnum to well-known previously published formulas for the

frequency shift, such as the one derived by Dewar [9] for a free EPW by assuming adiabatic

electron motion:
δωD

ωpe
≡ 1.09f ′′0 (uφ)(ωlin/ωpe)

√
Φ

1 + (kλD)2 − (ωlin/ωpe)2
. (4)

ωpe is the plasma frequency, f0(u) ≡ exp(−u2/2)/
√

2π, f ′′0 = d2f0/du
2, uφ ≡ ωlin/(kvTe), and

ωlin is the linear solution of 1+Re(χ) = 0, χ being calculated by making use of the adiabatic

approximation. ωlin only exists, and therefore δωD is only defined, when kλD < 0.53. As can

be seen in Fig. 2(b), δωD yields a good estimate of δωsrs and δωnum only when kλD . 0.35.

Morales and O’Neil [10] derived the frequency shift of a free EPW by assuming that it

is suddenly excited and found δωMO ≈ (1.63/1.09)δωD. δωMO is also only defined when

kλD < 0.53 and Fig. 2(b) seems to show that it is close to δωsrs and δωnum only when

0.37 ≤ kλD ≤ 0.46. This agreement is fortuitous: the ratio δωsrs/δωMO depends on Φ

because δωsrs is not simply proportional to
√

Φ. If one were to extrapolate the values of δωD

and δωMO beyond kλD = 0.53 by choosing for ωlin the linear frequency of the SRS-driven

wave, δωD and δωMO would be found to underestimate δωsrs whenever kλD > 0.35 and

kλD > 0.4, respectively. An example of this is given in Fig. 2(a).

We now explain our theoretical solution of Eq. (2) yielding δωsrs. First of all χ, whose

derivation is detailed in Ref. [5] , is calculated by assuming adiabatic electron motion and

by accounting for the change in phase velocity as the wave grows. As for the variations of η,

and therefore those of αd, they are deduced from the envelope equations of the plasma and
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scattered waves. The envelope equation of the EPW is given by Eq. (5) of Ref. [5] which,

at zero order in k−1∂xEp, yields

η =
−Re(χ)

Im(χ)
cos(δϕ) + sin(δϕ). (5)

For the scattered wave, we start with the standard governing equations, namely the Maxwell-

Ampère law, transverse canonical momentum conservation ( ~j⊥ = −ne2 ~A/m), and Gauss’s

law. As usual, we work to leading order in the space and time variations of the envelopes,

neglect ∂tωs and ∂xks, and keep only resonant driving terms. The resulting scattered-wave

envelope equation is [
∂t + (ksc

2/ωs)∂x + i∆res
s

]
Es = Γ0Epe

iδϕ (6)

where ∆res
s ≡ (ω2

s−k2
sc

2−ω2
pe)/2ωs represents detuning of the scattered wave from resonance

and Γ0 ≡ kvos/4. Defining γs ≡ E−1
s [∂tEs + (ksc

2/ωs)∂xEs], which represents the SRS

growth rate for the scattered wave, Eq. (6) yields

DsEs = η(2Γ2
0/ωs)Ese

iδϕ; Ds ≡ γs + i∆res
s . (7)

Assuming k ≈ const. and pump depletion is negligible so that Γ0 ≈ const., Eq. (7) yields

η ∝ |ωsDs|. The accuracy of the latter expression is illustrated in Fig. 3(c) which shows

similar time evolutions for the numerically measured values of |ωsDs| and η. It is noteworthy

that η reaches its maximum for quite a small value of Φ ≈ 2.5×10−3, showing that η quickly

increases with Φ.

As ω (and possibly k) vary nonlinearly, ωs and ks vary to maintain phase-matching

(ωl ≈ ω + ωs, kl ≈ k + ks). If ks remains close enough to kres
s ≡ −[ω2

s − ω2
pe]

1/2/c so that

∆res
s � γs, then Eq. (7) gives δϕ ≈ 0. From Eq. (5), the variations of η then closely follow

those of 1/Im(χ). Since we proved in Ref. [5] that, partly due to the decrease of the nonlinear

Landau damping rate, 1/Im(χ) increases with the EPW amplitude, we deduce that so does

η. Physically, the increase of 1/Im(χ) enhances the growth rate γs which, when δϕ ≈ 0,

is the main cause for the increase of |Ds| and therefore for that of η. Such a scenario is

illustrated in Fig. 3(d) for t < t0 ≡ 3500/ωl, when the increase of |Ds| is due to that of γs.

Consider the opposite case, where ks remains approximately constant while ωs upshifts.

This makes ∆res
s , and therefore |Ds| and η, increase. Hence, whether the scattered wave

remains on resonance (ks ≈ kres
s ) or not, η initially quickly increases with the wave amplitude

and αd therefore converges towards unity.
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FIG. 3: (Color online) Numerical values for Te=5 keV, kλD ≈ 0.448, and Il=4 PW/cm2, measured

at x = 173.5λl of, panel (a): Φ (blue solid line) and |δωnum| (green dashed line); panel (b): ks

(blue solid line) and kres
s (dashed green line); panel (c): |ωsDs| (blue solid line), η ≡ Ep/Ed (green

dashed line) and η0 ≡ η[ks = klin
s ], normalized to their linear values; panel (d): |Ds| (blue dashed

line) and γs (green dashed-dotted line) normalized to their maximum values, and (2/π)δϕ (red

solid line) vs. ωlt.
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Numerically, we find an overall decrease of ks with time (and therefore with Φ), similar

to that of kres
s [see Fig. 3(b)]. The variations of ks somewhat lag behind those of kres

s , and

by the time ks has significantly changed, η has grown enough for αd to be, and remain, very

close to unity. This can be appreciated in Fig. 3 (c) where the numerically calculated values

of η are compared to those of η0 derived by assuming that ks kept its linear value. It is

therefore valid to calculate αd by assuming ks=const., which we actually did when deriving

δωsrs.

γs may be adequately found by a simpler method than solving Eqs. (5-6). For all figures we

use γs =
√
γ2

0 + ν2
NL/4− νNL/2 where the nonlinear Landau damping rate, νNL, is given by

Eq. (49) of Ref. [5], and γ0 = kvosωpe/(4
√
ωsω). This formula for γs matches the maximum

growth rate of Ref. [11] in the linear regime, and allows for kinetic enhancement due to

Landau damping reduction. It however does not account for observed space dependence

of γs, which may induce space variations in δω, larger at larger laser intensities. There is

therefore a limitation in Il for the validity of our calculation, which increases with kλD.

When 0.3 ≤ kλD ≤ 0.58, our theory works well at least up to Il = 2 PW/cm2.

Let us now discuss previous results on SRS with the help of Fig. 3, which is representative

of all our numerical results. Fig. 3(b) shows a constant increase of δϕ towards π/2 until time

t1 ≈ 4500ω−1
l . This is consistent with Eq. (7) since, before t1, ks remains nearly constant

while ωs upshifts by about −δωsrs, which makes ∆res
s increase compared to γs. At time t1, ks

quickly approaches kres
s which makes δϕ drop towards 0 and γs increase because the driving

term for the waves is proportional to cos(δϕ). Therefore, in agreement with the results of

Ref. [1], we do find that the frequency shift induces a detuning, δϕ, which slows down the

growth of SRS.

However, before time tSB ≈ 12000ω−1
l , δϕ does not vary by more than π/2 which implies

that, before this time, the waves keep growing despite a large frequency shift, as is clear from

Fig. 3(a). At time tSB a sideband develops, which entails large and correlated fluctuations

in Φ and δϕ. Although we do find bursts in the SRS reflectivity, in none of our simulations

could they be attributed to the frequency shift alone. In fact, the impact of the frequency

shift on the detuning is strongly limited by a shift in ks similar to that plotted in Fig. 3(b).

Such a wave number shift is consistent with the spectral streak shown in Ref. [13] (despite

having a larger frequency shift than our theory predicts). In this paper it was argued that,

because of this streak, the waves should be in the form of pulses moving to the left. We
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do find that the waves are amplified to the left and that SRS keeps on being regenerated

inside of the simulation box. However, we have not recovered a spatially well-isolated pulse

as in Ref. [13] in the runs presented in this Letter. Unlike in Ref. [13], we have used a

Vlasov code with boundary seeding and uniform laser intensity, and have not accounted

for sideloss. Preliminary comparisons between PIC simulations with a uniform intensity

and Vlasov simulations accounting for a nonuniform intensity and transverse losses seem

to indicate that more isolated pulses result from a more peaked intensity. A more detailed

study is however left for future work.

We now discuss the results of Refs. [3] and [4], that there exists a maximum amplitude,

Φmax, beyond which 1 + Re(χ) is never 0 and actually increases with Φ, which implies that

the SRS growth rate drops when Φ > Φmax. This “loss of resonance” scenario therefore

yields an estimate of Φ for Raman saturation. However, Fig. 1(b) clearly shows that a

quasi-monochromatic wave can exist beyond the value Φmax = 0.05 predicted by Rose [4]

for the loss of resonance when kλD = 0.448. Since we both theoretically and numerically

find |αd − 1| < 1% when Φ > 0.05, we conclude that 1 + Re(χ) ≈ 0 and that the EPW

experiences no saturation due to a loss of resonance even when Φ > Φmax. Moreover, for the

parameters of Fig. 2(a), we find |αd− 1| < 2% when Φ > 3× 10−3, which demonstrates that

an EPW can be driven very close to resonance even when kλD > 0.53 and Φmax = 0. As

noted in Ref. [5], the discrepancy between the numerical results and the Rose and Russell

predictions is mainly due to their assuming that the wave frame is inertial when calculating

χ. It is noteworthy that in his famous paper on wave breaking, Coffey [14] also assumed

that the wave frame is inertial. Coffey’s criterion would then predict that in the case of Fig.

2(a) the wave would break when Φ > 0.03, which is not the case.

In conclusion, we theoretically derived and solved the nonlinear dispersion relation of

an SRS-driven EPW, and found results in very good agreement with those obtained from

Vlasov-Maxwell simulations of SRS, whatever the value of kλD investigated. We moreover

showed that the frequency shift of a freely propagating EPW is significantly smaller than that

of an SRS-driven EPW when kλD & 0.35. We also showed that the scattered electromagnetic

wave is initially driven off-resonance as the EPW frequency decreases, which entails a phase

shift between the plasma wave and the laser drive, and limits the growth of SRS.
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